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Abstract: In the past, different approaches for automated landslide identification based on 

multispectral satellite remote sensing were developed to focus on the analysis of the spatial 

distribution of landslide occurrences related to distinct triggering events. However, many 

regions, including southern Kyrgyzstan, experience ongoing process activity requiring 

continual multi-temporal analysis. For this purpose, an automated object-oriented landslide 

mapping approach has been developed based on RapidEye time series data complemented 

by relief information. The approach builds on analyzing temporal NDVI-trajectories for the 

separation between landslide-related surface changes and other land cover changes. To 

accommodate the variety of landslide phenomena occurring in the 7500 km2 study area, a 

combination of pixel-based multiple thresholds and object-oriented analysis has been 

implemented including the discrimination of uncertainty-related landslide likelihood classes. 

Applying the approach to the whole study area for the time period between 2009 and 2013 has 

resulted in the multi-temporal identification of 471 landslide objects. A quantitative accuracy 

assessment for two independent validation sites has revealed overall high mapping accuracy 

(Quality Percentage: 80%), proving the suitability of the developed approach for efficient 

spatiotemporal landslide mapping over large areas, representing an important prerequisite 

for objective landslide hazard and risk assessment at the regional scale. 
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1. Introduction 

Landslides are a major natural hazard causing serious damage to buildings and technical 

infrastructure, as well as severe loss of life in many mountainous regions worldwide [1–3]. Against 

this background, landslide hazard and risk assessment is of great importance requiring the assessment 

of past process activity in the form of landslide inventories containing spatiotemporal information 

about occurrence and characteristics of landslides [4–8]. Since such inventories have to be as complete 

and precise as possible in time and space, multi-temporal inventories are needed, especially in regions 

of frequently occurring landslides [6]. The generation of these multi-temporal inventories requires 

efficient methods for landslide mapping which allow analyzing large areas with high temporal 

resolution over long periods of time. Traditional mapping methods, such as field surveys supported by 

visual interpretation of remote sensing data [9,10], are time consuming and resource intensive.  

As a result, for many regions of the world, comprehensive landslide inventories are missing or the 

existing ones are limited in their spatial extent and temporal resolution [6,11,12]. In this context, the 

use of multi-temporal satellite remote sensing data opens up the opportunity for the development of 

efficient methods for systematic spatiotemporal mapping of landslides over large areas. For the 

purpose of post-failure mapping, mainly optical remote sensing data have been used, as most of the 

landslide processes lead to disturbance of the Earth’s surface resulting in significant changes in the 

reflectance characteristics of these surfaces [6,13–15]. 

Southern Kyrgyzstan represents such a region of high landslide activity where large events 

frequently cause damage to human settlements and infrastructure and also lead to loss of human lives. 

Past landslide investigations in this area have resulted in a comprehensive principle process 

understanding, thereby revealing that most of the landslides are caused by complex interactions 

between tectonic, geological, geomorphological and hydro-meteorological factors [13], whereas the 

highest process activity can be observed in spring with large variations between the years. Most of 

these landslides cannot be related to major triggering events, such as intense rainstorms or strong 

earthquakes. Thus, an improvement of the spatiotemporal understanding of landslide processes in this 

region requires a systematic assessment of landslide events in the form of multi-temporal landslide 

inventories forming the basis for objective and spatially differentiated analyses of landslide hazard and 

risk [11,16–19]. 

In this context, the goal of this study has been the development of an automated approach for 

landslide mapping over large areas based on optical satellite remote sensing data which allows the 

establishment of multi-temporal landslide inventories, including the possibility for regular updates. 

This goal requires the availability of optical remote sensing data with high temporal and spatial 

resolution for the whole area of interest (Figure 1). Moreover, the approach needs to enable  

object-oriented and efficient automated mapping of landslide events using the available time series 

database. This includes the identification of landslides of different types and spatial extents occurring 
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in varying land cover surroundings, lithological conditions and relief positions that are frequently 

changing throughout a large mountainous region. Furthermore, the generation of multi-temporal 

landslide inventories requires mapping results in an object-based form for subsequent GIS-based 

derivation of landslide characteristics. 

Figure 1. Overview of study area. (a) Extent of study area represented by true color 

RapidEye mosaic acquired in June 2013; (b) Topographic relief overlaid by previously known 

Landslide events; (c) RapidEye spatiotemporal data coverage between 2009 and 2013. 

 

Most of the existing automated methods using optical remote sensing data have been developed for 

one-time landslide mapping after a single major triggering event. These methods are based on either a 

single post-event classification (e.g., [15,20–23]) or a bi-temporal change detection between an image 

pair acquired before and after the triggering event (e.g., [24–28]). Single post-event classification 

approaches assume that all of the mapped landslides have been caused by the analyzed triggering event 

without further specifying the time period of landslide occurrence. Bi-temporal approaches allow the 

derivation of the time period of landslide occurrence determined by the acquisition dates of the 

analyzed image pair. Thus far, only Martha et al. [29,30] have proposed a semi-automated approach 

for generating a multi-temporal landslide inventory of annual temporal resolution for the time period 

between 1998 and 2009 for a 81 km2 region in India. However, this approach had been initially 

developed for event-based one-time analysis and therefore does not use efficiently the full temporal 

information content of the available time series data. Furthermore, in most of the published studies, the 

methods have been applied to rather small test sites of 100 km2 or less. In only two recent studies [28,31] 

have the proposed methods been developed for study areas of more than 1000 km2. During the last 

years, an increasing number of studies has proposed methods for object-oriented landslide mapping 
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(e.g., [20,32–37]), which is required for landslide inventories and also for the integration of additional 

contextual information in order to further improve the mapping reliability [33]. However, there is still a 

lack of approaches allowing object-oriented landslide analysis over large areas, while making efficient 

use of time series data for multi-temporal landslide mapping with best possible temporal resolution. 

Against this background, the methodological goal of this study is the development of an automated 

approach for object-oriented landslide mapping of large areas which is suitable for generating  

multi-temporal landslide inventories, including the possibility for regular monitoring of spatiotemporal 

landslide activity. For this purpose, a multi-temporal RapidEye [38] remote sensing database of 5 m 

spatial resolution has been established for a 7500 km2 landslide-affected area in southern Kyrgyzstan 

for the time period between 2009 and 2013 with up to six multi-temporal acquisitions per year between 

April and July (Figure 1c). The database contains standard orthorectified Level-3A data products to 

enable operational applicability of the approach requiring efficient analysis of large amounts of data 

independent from the availability of ground truth information. The landslide situation in the study area 

and the spatial database are described in more detail in Section 2, also showing the multi-temporal 

appearance of different landslide types occurring in the study area. Section 3 describes the developed 

approach for object-oriented multi-temporal landslide mapping based on temporal NDVI-trajectories 

covering the whole available time series. Section 4 presents the results obtained by applying this 

approach to the whole study area. Subsequent systematic accuracy assessment is performed for two 

independent validation sites that differ in landslide activity and natural conditions (Section 5). 

In Section 6, the developed approach is discussed in regards to its methodological specifics, achievable 

accuracy and principle applicability. These are followed by the concluding remarks of Section 7. 

2. Study Area and Database 

2.1. Study Area and Landslide Situation 

In southern Kyrgyzstan, landslides are especially concentrated in the foothills of the high mountain 

ranges along the eastern rim of the Fergana Basin in an elevation range between 700 and 2000 m 

(Figure 1b). Most of these landslides occur in form of rotational and translational slides in weakly 

consolidated Quaternary and Tertiary sediments [13]. They represent complex failures and vary greatly 

in their size, ranging between several hundred and several million square meters, whereas large events 

of more than one million cubic meters of displaced material have been frequently occurring. Since the 

beginning of landslide investigations in the 1950s, about 3000 landslides have been reported by local 

authorities [39,40]. However, these investigations have been mostly limited to areas in the vicinity of 

populated places and focused on major events with high destructive potential [41]. Thus, the existing 

spatiotemporal knowledge on landslide events is incomplete and leaves the need for a systematic 

multi-temporal landslide inventory as a main prerequisite for objective hazard assessment. 

The 7500 km2 study area covered by 12 RapidEye tiles (Figure 1c) is strongly affected by 

landslides. This region experiences above-average precipitation due to its orographic position west of 

the topographically rising eastern rim of the Fergana Basin, thus forming a barrier against the 

prevailing westerlies. The resulting increased precipitation level represents the main factor for the 

mobilization of landslides in this region. However, this process takes place over longer periods of time 
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and is not related to single triggering events, such as short-term intense rainstorms. The relatively high 

availability of water leads to a largely developed vegetation cover dominated by grasslands. Therefore, 

landslide failures cause significant vegetation removal resulting in a distinct contrast between 

landslides and their surroundings that is easily detectable in optical imagery. Figure 2 illustrates this 

situation in an exemplary way based on four landslides typical of the whole study area using four 

multi-temporal RapidEye images contained in the database. All of these landslides occurred in spring 

2010 between the depicted RapidEye acquisitions of 26 May 2009 and 2 May 2011. All of them have 

caused major disturbance of the Earth’s surface and large displacement of material consisting of top 

soil, as well as underlying weakly consolidated sediments. The resulting destruction of the original 

vegetated surface cover is clearly visible and largely preserved during the whole depicted post-failure 

time period. 

Figure 2. Multi-temporal development of landslides that occurred in spring 2010. Top: 

Field photos (September 2012). Bottom: RapidEye true color RGB images overlaid by 

outlines of landslides (Black: landslide occurred before acquisition date. White: landslide 

occurred after acquisition date). LS1a—deep-seated fresh failure of reddish sandstone; no 

revegetation; LS1b—deep-seated fresh failure of loess; slight revegetation; LS2—shallow 

fresh failure of loess; fast revegetation; LS3—deep-seated second reactivation of loess 

which occurred in 2012; no revegetation. (Red arrows: view direction of the field photos.) 

 

Field work carried out in the entire study area has revealed that the degree of vegetation destruction 

and the rate of post-failure revegetation are variable and depend on a number of factors, such as initial 
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vegetation cover, degree of soil disturbance, hydrometeorological conditions, lithology, and state of 

activity of the landslide. Fresh failures (LS1a,b and LS2) are characterized by a high degree of 

vegetation destruction due to an undisturbed dense initial vegetation coverage shown by the pre-event 

image of 26 May 2009. Conversely, reactivations (LS3) are associated with less vegetation destruction 

because they are typically characterized by sparse and patchy initial vegetation coverage as a result of 

a former landslide at this position. For all landslides, the post-failure revegetation is typically very 

slow, as the landslide masses are susceptible to erosion and reactivation processes. In the case of the 

depicted deep-seated landslide examples (LS1a,b and LS3), hardly any revegetation can be seen in the 

image acquired three years after the failure (18 May 2013), whereas the shallow landslide LS2 is 

characterized by faster revegetation. 

2.2. Remote Sensing Database and Pre-Processing 

The multi-temporal optical remote sensing database consists of 216 orthorectified Level-3A 

RapidEye datasets delivered in the form of 25 × 25 km2 tiles with 5 m pixel size. They have been 

provided by the RapidEye Science Archive (RESA) data grant program which has allowed customized 

data acquisition in pre-defined time periods of high landslide activity. As a result, a high temporal 

resolution of up to six acquisitions during the growing season between April and July could be 

achieved. Together with archive data acquired in 2009, there was a result of up to 20 acquisition dates 

between the years of 2009 and 2013, whereas no acquisitions were performed in 2010 (Figure 1c). The 

resulting high temporal resolution allows the determination of the time period of landslide occurrence 

up to several days and weeks, which is important for spatiotemporal analysis of landslide activity in 

respect to triggering and predisposing factors. Besides the multispectral remote sensing data, the 

developed landslide mapping approach is also based on a digital elevation model (DEM) of 30 m 

spatial resolution derived from the X-band data of the Shuttle Radar Topography Mission in February 

2000 [42]. The DEM is used to derive landslide-related geomorphological information for the study 

area as contextual information for more reliable object-oriented landslide mapping (Section 3.2.3). 

2.3. Pre-Processing of Remote Sensing Data 

Pre-processing aims at the reduction of artifact changes in subsequent time series analysis.  

Such artifact changes are introduced by geometric mismatches and radiometric differences between the 

image data sets, as well as pseudo-surface cover changes introduced by the temporary presence of 

clouds and snow [43,44]. To foster the potential for operational use and taking into account the high 

number of datasets, pre-processing has to be performed in an automated, robust and efficient way.  

For geometric adjustment, an image-to-image co-registration approach has been developed that allows 

automated spatial alignment of time series data comprising orthorectified standard data products [45]. 

As a result, geometric offsets of up to 60 m between the multi-temporal image data have been 

corrected and a relative image-to-image co-registration accuracy of less than one 5 m RapidEye pixel 

could be achieved for the complete multi-temporal database. To reduce the effects of radiometric 

differences between the images for subsequent change detection analysis, the developed landslide 

mapping approach (Section 3) is based on the temporal comparison of the normalized difference 

vegetation index (NDVI) derived from the standard corrected top-of-atmosphere radiance data.  
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The remaining variability in NDVI values between the multi-temporal datasets needs to be 

compensated by the developed approach (Section 3.2). For masking clouds and snow, a threshold has 

been applied to the blue band of the RapidEye images (Band1BLUE > 1050 W·m−2·sr−1·µm−1).  

This threshold based approach has been extended by analyzing the whole time series in order to 

separate between permanent bright objects (e.g., sand and urban objects) and temporary ones  

(clouds and snow). In this context, it is assumed that a permanent bright object is present in all images 

of the time series, whereas clouds and snow are only temporarily present. This way even less thick 

cloud cover could be identified. 

2.4. Reference Mapping for Validation Sites 

To quantitatively assess the accuracy of object-oriented landslide mapping resulting from the 

developed approach, reference mapping has been carried out for two spatially independent validation 

sites which have been affected by recent multi-temporal landslide activity. They are outlined in Figure 1 

and represent contrasting environments which are representative for the whole study area. The size of these 

validation sites amounts to approximately 14 × 11 km2 for the site Uchkun (Figure 3a) and 14 × 8 km2 for 

the site Papan (Figure 3b). The land use in these two sites is dominated by pastures and grassland. 

However, they also comprise several non-vegetated areas which could be mistaken for landslides, 

because of their similar appearance in optical remote sensing data. Both validation sites contain small 

settlements along the valleys close to the river beds. The Uchkun site further covers a bigger village in 

the southeastern part and an area of crop cultivation (western part), temporally without vegetation 

cover due to harvesting. The Papan site comprises a high percentage of permanently non-vegetated 

steep outcrops appearing as bright areas mainly in the center of the validation site. Furthermore, the 

two sites also differ in available remote sensing data, due to their location in different Level-3A 

RapidEye tiles (Figure 1c).  

Figure 3. Reference mapping of landslide activity. (a) Validation site Uchkun including 

the subset illustrating the methodological descriptions of Section 3 (black dashed line). 

LS1-3: landslides shown in Figure 2; (b) Validation site Papan. 

 

For both validation sites, a reference landslide inventory has been created by visual interpretation of 

the available RapidEye data acquired between 2009 and 2013, whereas the time period of occurrence 
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of a mapped landslide is determined by the time period between the pre- and post-event RapidEye 

image. In Figure 3, these time periods are classified into full years, whereas the acquisition date of the 

post-event image defines the depicted year of occurrence. An exception is caused by the missing 

RapidEye acquisitions in 2010 resulting in a class of landslide occurrence between 2009 and 2011. 

Manual reference mapping has also been supported by spatially very high resolution satellite remote 

sensing data contained in the Google Earth™ archive with most recent images acquired in June 2013 

for both validation sites. Furthermore, these inventories were validated during a field survey in 

September 2012. In total, 67 landslides were mapped—36 in the Uchkun and 31 in the Papan site.  

The size of these landslides ranges between 500 and 250,000 m2, whereas the total area affected by 

landslides amounts to approx. 1 km2. Both sites are characterized by spatial and temporal 

concentrations in landslide occurrence, as well as areas and time periods without landslide activity. 

The Uchkun site is most strongly affected between the years 2009 and 2011, whereas for the Papan 

site highest landslide activity could be observed for 2012. Thus, the two selected validation sites differ 

in spatiotemporal landslide occurrence as well as in natural conditions and available RapidEye data 

coverage, thereby making them suitable for representative accuracy assessment of the developed approach. 

3. Automated Approach for Multi-Temporal Landslide Mapping 

The methodological developments aim at the automated multi-temporal mapping of landslides 

based on satellite remote sensing time series data. Thus, the approach needs to be able to identify 

landslide activations occurring at different times during the analyzed time span, whereas the 

determination of the time of landslide occurrence depends on the length of the time period between 

two subsequent images contained in the remote sensing time series database. To meet the goal of 

generating a multi-temporal landslide inventory, the approach is required to derive the occurring 

landslides as single objects for each of these time periods. In this context, the approach needs to take 

into account the natural variability of landslide phenomena occurring within the large study area. 

To fulfill these requirements, the developed approach builds on a pixel- and object-oriented analysis 

of temporal NDVI-trajectories enabling the incorporation of rule-based knowledge about  

landslide-related surface cover changes. Furthermore, the approach comprises the possibility for the 

discrimination between uncertainty-related landslide likelihood classes to enable expert-aided evaluation 

of the results suitable for different applied tasks related to landslide investigations. For clarity, the 

descriptions of the basic idea (Section 3.1) and of the knowledge-based system (Section 3.2) are based 

on the exemplary analysis of the two subsequent RapidEye acquisitions (26 May 2009 and 2 May 

2011) within the 8 × 4.5 km2 subset depicted as dashed line in Figure 3a. In Section 3.3, the developed 

approach is extended to the whole time series available for this exemplary subset to demonstrate the 

derivation of the final results of multi-temporal landslide mapping. All methodological developments 

are realized using the open source programming language python. 

3.1. Temporal NDVI-Trajectories for Landslide Identification 

Temporal NDVI-trajectories represent specific temporal footprints of vegetation changes which are 

obtained for every pixel across the time span of the analyzed multi-temporal data stack. Figure 4 

illustrates how these NDVI-trajectories can be used to distinguish between landslide-related vegetation 
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changes (Figure 4(1)) and five other land cover changes (Figure 4(2–6)). In the case of the depicted 

landslide example LS1b, which occurred in the spring of 2010 (Figure 2(LS1b)), the failure caused a 

severe vegetation cover disturbance that is reflected in the abrupt decrease of the NDVI values 

between the RapidEye acquisitions of 26 May 2009 and 2 May 2011. These low post-failure NDVI 

values have been maintained for the following two years, indicating a slow revegetation rate in the area 

of the displaced landslide masses (Section 2.1). Based on the resulting distinct temporal 

NDVI-trajectory, landslides can be distinguished from permanently non-vegetated areas (Figure 4, 

bottom) characterized by permanent low NDVI values, as well as from temporally vegetated areas 

(Figure 4, top) characterized by a less distinct NDVI decrease and/or faster revegetation rates. 

Figure 4. Temporal NDVI-trajectories used for differentiating landslides to other land 

cover changes. Images: NDVI illustrations (A'–C') of exemplary RapidEye acquisitions 

(A–C) containing the position for the derived NDVI-trajectories 1–6. Diagrams: 

Comparison of the landslide trajectory (1) with vegetated surfaces (2,3) and with 

continually non-vegetated surfaces (4–6). Grey bars mark time periods of data availability 

focusing on the growing season. 
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Compared to the ideal case of the fresh failure LS1b, other landslides may result in less distinct 

vegetation changes. Figure 5a illustrates such less-pronounced differences by depicting one 

characteristic NDVI-trajectory for each of the four landslide examples shown in Figure 2. If mass 

movements represent reactivations, which are typically occurring in areas of already existing 

landslides (Figure 2(LS3)), a smaller decrease of the NDVI values can be observed because of the 

sparser vegetation cover before failure. In the case of small shallow landslides (Figure 2(LS2)), the 

revegetation rate is often faster, because of the less severe soil disturbance. In the case of the 

deep-seated landslides (LS1a and LS1b), the NDVI-trajectories are very similar, showing their 

independence from the lithological properties of the material involved in the landslide failures. Besides 

the differences between the respective landslides, the temporal vegetation change characteristics also 

differ within a single landslide. Figure 5b depicts NDVI-trajectories for 20 pixels within landslide LS1b 

showing differences in the bi-temporal NDVI decrease and rate of post-failure revegetation. However, 

despite all of the described differences, the typical shape of a landslide-specific NDVI-trajectory is 

still maintained. 

Figure 5. Variety of landslide-related NDVI-trajectories. (a) Differences between landslide 

types shown in Figure 2; (b) Differences within a single landslide event demonstrated by 

20 NDVI-trajectories derived at various pixel positions within Landslide LS1b. 

3.2. Processing System for Knowledge-Based Landslide Identification 

Based on the temporal NDVI-trajectories, a combined pixel- and object-oriented approach has been 

developed for the automated identification of landslide occurrence for subsequent image pairs, taking 

into account the entire available time series. For this purpose, the approach analyzes the degree of 

bi-temporal vegetation changes serving as the basis for the segmentation of landslide candidate objects 

for each time period (Section 3.2.1). In the following, these landslide candidate objects are evaluated 

regarding their plausibility in terms of post-event multi-temporal revegetation (Section 3.2.2) and 

relief-oriented parameters (Section 3.2.3). Figure 6 exemplarily illustrates the derivation of parameters 

that are used in the temporal NDVI-trajectory analysis. Figure 7 shows the overall processing scheme 

of the developed approach subdividing these three major parts into the processing steps A–F. 

The description in Section 3.2 follows steps A–F, whereas the empirically determined thresholds for 

each step are listed at the right of Figure 7. Figure 8 illustrates the results of each processing step based 

on the subset area shown in Figure 4. In the final step of the approach (Section 3.2.4), the 
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object-oriented results are evaluated by the introduction of a reliability classification in the form of the 

overall landslide likelihood. 

Figure 6. Trajectory parameters for an exemplary landslide-related NDVI-trajectory. 

Figure 7. Multi-temporal landslide identification approach based on temporal 

NDVI-trajectories and relief oriented analysis. (Left) Processing scheme; (Right) Implemented 

thresholds for steps A to F. 
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3.2.1. Derivation of Landslide Candidate Objects Based on Bi-Temporal Vegetation Change Analysis 

A: Pixel-Oriented Bi-Temporal Change Detection 

To classify the bi-temporal vegetation disturbance for each pixel (CDIST) in regards to the possibility 

of landslide occurrence, the NDVI values after an expected landslide (post) and the normalized index of the 

NDVI values of the pre-event and post-event image (index) are used in combination (Figures 6 and 7). 

As shown in Figure 4, landslides usually cause the total loss of previously existing vegetation, which 

results in high index values and post values of less than zero representing bare soil. However, to 

accommodate the variety of landslide processes (Figure 5), the bi-temporal analysis of vegetation 

disturbance (CDIST) is performed on a scale of 9 classes (Figure 7). The main idea of this multiple 

threshold-based analysis is adapted from the robust differencing approach developed by Castilla et al. [46]. 

The usage of multiple thresholds also enables the identification of less-pronounced surface cover 

changes related to landslide occurrence, e.g., if the vegetation cover is already less dense before the 

landslide event (e.g., Figure 2(LS3)). Figure 8A illustrates the results of this classification. The pixels 

representing deep-seated landslides (Figure 8(1)) have been classified with the highest CDIST class of 9 

and the landslide pixels characterized by less distinct bi-temporal vegetation changes (Figure 8(2,3)) 

have been assigned to lower CDIST classes. However, the classification has also led to a high 

percentage of false-positive pixels that are introduced by slight vegetation changes in sparsely 

vegetated areas mainly in the northeastern part and by a distinct vegetation loss in the area of harvested 

fields in the western part of the subset shown in Figure 8. The exemplary NDVI-trajectory for 

harvested fields (Figure 8(4)) shows bi-temporal changes that are very similar to the ones of the 

deep-seated landslides (Figure 8(1)) and thus results in the same CDIST classes. 

B: Object-Oriented Classification of Bi-Temporal Landslide Likelihood 

Based on the pixel-oriented results of the first step, a subsequent segmentation is performed that 

extracts individual segments from all of the spatially 8-connected pixels which have been assigned to a 

vegetation disturbance class (CDIST > 0). The segments are classified regarding their bi-temporal 

landslide likelihood (CBITEMP) by analyzing the frequency of the CDIST classes for all pixels contained 

in the segment. If the segments do not meet any of the landslide likelihood criteria shown in Figure 7 

(CBITEMP = 0), they represent segments containing an excessively high percentage of pixels 

characterized by vegetation changes not typical for landslide occurrence; they are therefore eliminated. 

All other segments are kept as landslide candidate objects characterized by a three-step bi-temporal 

landslide likelihood (CBITEMP = 1–3) of ascending order (Figure 8B). This procedure ensures the 

derivation of landslides as single objects even if in part they do not represent the optimal case of a 

significant vegetation disturbance. At the same time, this procedure reduces the high number of pixels 

with slight vegetation changes that can be considered as noise. Figure 8B shows that the deep-seated 

landslides (Figure 8(1,w)) are classified with the highest bi-temporal landslide likelihood (CBITEMP = 3) 

because their segments consist of more than 30% of pixels with the highest bi-temporal vegetation 

disturbance class (CDIST = 9). The reactivated landslide (Figure 8(2,x)) and the shallow landslide 

(Figure 8(3,y)) are classified with lower bi-temporal likelihood values (CBITEMP = 2). Furthermore, 

Figure 8B shows the reduction of false-positive pixels, especially in the northeastern part of the subset. 
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Figure 8. Landslide mapping approach for two subsequent RapidEye data acquisitions 

within the multi-temporal data stack. (A–F) Processing steps with zoom ins, (a–f) which 

are indicated by yellow rectangles, w,z: exemplarily described objects. 
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3.2.2. Multi-Temporal Revegetation Analysis 

C: Pixel-Oriented Multi-Temporal Change Detection 

For each pixel contained in the identified objects, the revegetation is analyzed within a user-defined 

time span allowing the differentiation between landslide-related slow revegetation and other vegetation 

cover changes. In this study, this time span is limited to a maximum of three years, because the 

vegetation usually starts to recover in most parts of the landslides after these three years. Based on all 

post-event images available in this time span, the degree of revegetation is classified into four rates of 

revegetation (CREVEG). They are based on the maximum (postMAX) and mean NDVI values (postMEAN) 

derived from the NDVI-trajectory (Figure 6). The combination of postMAX and postMEAN allows a robust 

determination of the revegetation rate (Figure 7). In contrast, the single use of postMAX would be 

susceptible to co-registration errors, which could result in high NDVI values at the edge of landslide 

objects if the landslide is surrounded by vegetation. The single use of postMEAN would be more 

susceptible to the date of the image acquisitions and could result in rather low NDVI values for fields 

if the field is harvested in the majority of the acquired datasets. Figure 8C shows a reliable 

differentiation between landslide-related surface changes and fields resulting from the revegetation rate 

classification. The pixels of the fields are characterized by revegetation rates higher (CREVEG = 0) than 

the landslide pixels (CREVEG = 2 or 3). 

D: Object-Oriented Classification of Multi-Temporal Landslide Likelihood 

Based on the frequency of the pixel-oriented revegetation rate classes (CREVEG), the landslide 

candidate objects are further characterized in regards to their multi-temporal landslide likelihood 

(CMULTITEMP). Following the procedure described in (B), all landslide candidates are eliminated that do 

not meet any of the criteria shown in Figure 7 (CMULTITEMP = 0) and the remaining objects are 

classified into three likelihood classes (CMULTITEMP = 1–3). Thus, fields are eliminated from the 

landslide candidates, whereas landslides are maintained (Figure 8D). This way, landslides of 

low revegetation rates (Figure 8((1,w),(2,x))) and also landslides of faster natural revegetation 

(Figure 8(3,y)) could be distinguished from fields, whereas the shallow landslide (Figure 8(3,y)) is 

characterized by slightly lower multi-temporal landslide likelihood (CMULTITEMP = 2). 

3.2.3. Relief-Oriented Analysis 

E, F: Pixel- and Object-Oriented Analysis of Relief Parameters 

Landslide candidate objects are further evaluated in regards to relief-based plausibility based on the 

two parameters: slope and parallelism to streams (Figure 7). The first parameter slope has already been 

widely used for this purpose [20,21,24,28,29,35]. It takes into account the fact that landslides require 

a certain initial relief contrast to allow the downward movement of material as a result of the onset of 

a slope failure. In this study, landslide objects are required to be characterized by an average slope 

(slopeMEAN), ranging between 7° and 30°. However, this range is only applicable to the source area of 

a landslide, since the accumulation zone can also comprise flatter parts resulting in slope values below 

the thresholds implemented for slopeMEAN. Therefore, the approach also analyzes the proportions of the 
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slope values (slopeHIST) within the landslide object. If at least 50% of the slope values are larger than 

8°, the object is still considered a landslide. Both parameters (slopeMEAN, slopeHIST) are combined to a 

slope-oriented parameter (CSLOPE) for the evaluation of each landslide candidate object. 

The second parameter, parallelism to streams, aims at eliminating false positives which occur if a 

river has flooded a formerly vegetated area or if local co-registration errors between the pre- and 

post-event images result in changes which have the same appearance as the ones in the flooded areas. 

An example is shown in the lower right part of Figure 8e. Analysis of a landslide object being parallel 

to streams is based on the distance and orientation of that object in regards to the stream network 

(Figure 7) derived from a DEM using the stream order by Strahler [47]. The orientation of the 

landslide object and the corresponding part of the adjacent stream is calculated by using the major axis 

of the ellipse, which is defined by the second central moment of the analyzed region [48]. First-order 

streams are excluded from this analysis because landslides are often occurring alongside these 

topographically less pronounced valleys. For all other streams belonging to higher orders, the objects 

are evaluated in three steps (Figure 7) according to the degree of parallelism (CSO), whereas CSO = 2 

represents the highest degree of being parallel. Both object parameters (CSLOPE, CSO) are combined into 

the relief-oriented landslide likelihood (CRELIEF). If the landslide candidates are either clearly parallel 

to a stream (CSO = 2) or do not meet any of the slope criteria (CSLOPE = 0), they are classified as false 

positives. Applying this procedure, the object in the southeastern part of the enlarged zoom area of 

Figure 8e, which is parallel to a fourth-order stream, is eliminated from the identified landslide 

candidates shown in Figure 8f. The remaining landslide candidates are characterized by the three-step 

relief-oriented landslide likelihood parameter (CRELIEF) illustrated in Figure 8F. 

3.2.4. Classification of Overall Landslide Likelihood 

To obtain meaningful results in the process of automated landslide identification—comprising the 

existing variability of landslide phenomena and the possibility for subsequent evaluation of the results 

by landslide experts—the identified landslide objects are classified into four (I-IV) classes representing 

different degrees of overall landslide likelihood (Figure 9). These classes are an expression of the level 

of uncertainty related to the automated identification of this particular landslide object using the three 

previously described parameters CBITEMP, CMULTITEMP and CRELIEF. Class I represents the ideal case of a 

deep-seated fresh failure which is characterized by high bi-temporal vegetation loss (CBITEMP = 3), 

very low revegetation rates (CMULTITEMP = 3) and very high relief oriented landslide likelihood 

(CRELIEF = 3). Both deep-seated fresh landslides LS1a and LS1b (object w in Figures 8 and 9) are 

characterized by the highest overall landslide likelihood. The reactivated landslide LS3 (object: x) is 

characterized by less distinct vegetation loss (CBITEMP = 2), but it still performs to an ideal in terms of 

the other two parameters and is thus classified into the overall landslide likelihood class II. 

Additionally to the non-ideal bi-temporal vegetation changes of class II, class III comprises also 

non-ideal revegetation rates. The small shallow landslide LS2 (object: y) represents an example for this 

case, which is characterized by likelihood parameter values of 2 for both CBITEMP and CMULTITEMP. In 

the case of the lowest landslide likelihood class IV, objects are characterized by non-ideal values (<3) 

for all three parameters. The object z in Figures 8 and 9 represents an example for such cases. Overall, 
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this demonstrates that these landslide likelihood classes represent the level of uncertainty as well as, to 

a certain degree, the type of landslide activation. 

Furthermore, these overall landslide likelihood classes enable the separation of the automatically 

derived landslide mapping results into four selection categories (I–IV) representing a selection of the 

results of varying levels of strictness. In this context, the selection category IV represents the least 

strict selection and comprises all automatically mapped objects independent from the assigned overall 

landslide likelihood class. In contrast, category I solely comprises the objects belonging to the highest 

landslide likelihood class representing the most strict selection. In Section 5, the results of these 

selection categories are evaluated in regards to mapping accuracy, thereby showing how these 

categories influence the approach in terms of automated or semi-automated usage. 

Figure 9. Overall landslide likelihood derived for identified objects (cf. Figure 8F). 

3.3. Multi-Temporal Landslide Mapping for Whole Time Series 

The application of the approach to the whole RapidEye time series has resulted in the identification 

of landslide events in four out of the 15 subsequent image pairs (Figure 10). The length of the identifiable 

time period of landslide occurrence depends on the temporal resolution of the available RapidEye time 

series data. In the case of the methodological subset, it varies between nine days (17 May 2009–26 May 

2009) and two years (26 May 2009–2 May 2011). The results reveal the suitability of the approach for 

the identification of landslides representing fresh failures and reactivations (Section 2.1). In Figure 10, 

fresh failures are represented by the landslides LS1a, LS1b, and by the green polygon. Reactivations 

are shown by the polygons within the yellow ellipse and the landslide LS3. In the case of landslide 

LS3, two reactivations could be identified that both resulted in an enlargement of the crown area of the 

landslide and caused a further downward displacement of the already accumulated material. Moreover, 

Figure 10 also shows that the automated identification is independent from the lithology of the affected 

slopes, whereas the majority of the identified landslides occurred within loess (bright areas) and some 

within weakly consolidated reddish sedimentary rocks (e.g., LS1a). 

The exemplary results show that the approach is capable of reliable identification of landslides 

occurring during the analyzed time span (2009–2013) and distinguish them from older landslides that 

were already present. Furthermore, Figure 10 also confirms the suitability of analyzing temporal 

NDVI-trajectories for the separation between landslide objects and other non-vegetated areas, such as 

buildings, streets, outcrops and river beds. However, the purple ellipses shown in Figure 10 indicate 
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two falsely identified landslide objects representing false positives (FP) in the specific form of small 

erosion features at a riverbank. To evaluate the influence of such identification errors on the overall 

quality of the automated landslide mapping result, a quantitative accuracy assessment was performed 

and is outlined in Section 5. 

Figure 10. Mapping results for the entire time period 2009–2013. Identified landslide 

objects are depicted according to their time period of occurrence and overlaid on a 

perspective view, together with a RapidEye image acquired at 4 June 2012. LS1–3: 

landslides shown in Figure 2; I–IV: overall landslide likelihood classes. 

4. Application of Approach to Whole Study Area

Automated multi-temporal landslide mapping has been performed for the whole study area, which

is characterized by variations in natural conditions and temporal RapidEye data coverage (Section 2). 

The complete mapping result, which includes objects of all overall landslide likelihood classes, has been 

visually validated by landslide experts to remove obvious false positives. All automatically identified 

landslides could therefore be included in the overall evaluation of the spatiotemporal landslide activity. 

As a result, 471 landslides have been identified, whose location, classified size, and time period of 

occurrence is depicted in Figure 11. During field investigations in September 2012, 120 of these 

identified landslides were visited, only revealing four false identifications. Each of these cases 

represented a manmade removal of construction material in the lower part of a slope. 
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The size of the identified landslides ranges between 125 and 750,000 m2, and the total area affected 

by these landslides amounts to 6.1 km2 (Table 1). Table 1 also shows the distribution of the temporal 

landslide activity in respect to the classified time periods. The longest analyzed time period between 

2009 and 2011 comprises 55% of all identified landslide objects. Landslide activity is less intense in 

the other analyzed years, varying between 6% of occurred landslide events in 2009 and 18% in 2012. 

These findings reveal a constantly ongoing landslide activity independent from major triggering 

events, such as intense rainstorms or larger earthquakes that did not happen in this region during the 

analyzed time period between 2009 and 2013. Moreover, the spatial distribution of the landslide 

objects depicted in Figure 11 shows clear spatial variations in landslide activity, including areas of 

distinct concentrations, whereas most landslides occurred at elevations between 900 and 2300 m. 

For this region, the obtained results comprise the first systematic assessment of spatiotemporal 

landslide activity, thus representing a main prerequisite for objective hazard and risk assessment. 

Figure 11. Results of landslide mapping for the whole study area between 2009 and 2013. 

Landslide objects are depicted according to size and time period of occurrence. 

Background: color shaded relief (cf. Figure 1b). 

Table 1. Summary statistics of the landslide mapping results. 

Time Period N N (%) Area (m2) Area (%) Min (m2) Max (m2) Mean (m2) 

2009 27 6 84,775 1 125 12,950 3140 
2009–2011 260 55 3,732,712 61 400 242,900 14,357 

2011 66 14 642,874 11 325 55,000 9741 
2012 83 18 667,749 11 400 53,575 8045 
2013 35 7 962,372 16 250 775,192 27,496 

2009–2013 471 100 6,090,482 100 125 775,192 12,931 
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5. Accuracy Assessment 

The systematic accuracy assessment of the developed approach is performed for two independent 

validation sites (Section 2.4). Section 5.1 assesses the influence of the landslide likelihood-based 

selection categories on the quantitative accuracy of the landslide mapping results. In Section 5.2, the 

accuracy assessment is complemented by the evaluation of the geometric quality of the automatically 

identified landslide objects. 

5.1. Quantitative Landslide Mapping Accuracy 

To obtain a comprehensive quantitative evaluation of the approach, the conformity between 

automated identification and reference mapping is analyzed for both validation sites and for each 

selection category (I–IV) in regards to the number of landslides and the area affected by these 

landslides. This comparison results in one of three relevant identification categories: true positive (TP), 

false negative (FN), and false positive (FP). TPs comprise the correctly mapped landslides, whereas 

the other two identification categories represent two types of identification errors. FNs correspond to 

reference landslides that have not been identified by the approach, and FPs are identified landslide 

objects which have not been mapped in the reference inventory. The fourth identification category of 

true negatives (TN) does not apply in the case of object-based single-target classifications [29]. 

To evaluate the performance of the landslide mapping approach the three relevant identification 

categories have to be considered in relation to each other. The best result is characterized by 100% TP and 

absent identification errors (0% FP and 0% FN). Based on this relation, the four accuracy metrics, 

Detection Percentage, Omission Error, Commission Error and Quality Percentage [29,49,50],  

are selected for the comprehensive accuracy assessment: 

Detection Percentage    100  
TP

TP FN
=

+
×  (1)

Quality Percentage    100  
TP

TP FN FP
=

+ +
× (2)

Omission Error    100       100  Detection Percentage
FN

TP FN
= =

+
× −

 
(3)

Commission Error    100  
TP FP

FP
=

+
×

 
(4)

The Detection Percentage—also called True Positive Rate or Producer Accuracy—represents the 

percentage of landslides which have been correctly identified by the automated approach.  

The Commission Error and the Omission Error describe separately the influence of the two possible 

identification errors FP and FN, respectively. The Quality Percentage represents an integrative 

indicator and relates the correctly mapped landslides to both possible identification errors, indicating 

how likely a landslide is correctly identified.  

Figure 12 illustrates in a spatially explicit way the results of the four different selection categories 

for both validation sites in comparison to the reference mapping. At the bottom of Figure 12,  

the performance of each selection category is shown in terms of the four accuracy metrics  
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(Equations (1)–(4)), which are calculated based on the accuracy statistics shown in Table 2. The less 

strict selection categories result in higher Detection Percentages with a maximum of up to 95% correct 

identification of the landslide-affected area and more than 80% of the number of landslides achieved 

by selection category IV. Thus, category IV is most suitable to minimize missing identifications (FN) 

and to obtain results that comprise most of the landslide occurrences, including landslides that are 

characterized by very slight vegetation cover changes, represented by reactivations of already existing 

landslides or very small and shallow landslides. However, applying less strict selection categories, the 

number of FPs increases, which is expressed by the higher Commission Errors. Therefore, the 

mapping results of category IV are most suitable for subsequent evaluation by a landslide expert who 

can interactively eliminate the FPs. This way, the least strict selection category minimizes the 

likelihood that potentially dangerous landslide objects are not included in the automated mapping 

result. In contrast, category I results in the complete absence of FP for the Papan site and only a single 

FP object of 900 m2 size for the Uchkun site. Thus, category I minimizes the number of FPs and limits 

the automated identification results to correctly identified landslide objects (TP) that are most likely to 

represent fresh landslide failures. Hence, if only landslide objects that represent most recently occurred 

new landslides are of interest, the selection category I can be used. 

However, to apply the approach to large areas in a fully automated way, the approach needs to 

counterbalance the influence of the two identification errors (FP, FN). The integrative  

Quality Percentage takes this into account and shows the highest values for categories II and III in both 

validation sites. As a result, the application of these categories results in correct landslide identification for 

more than 90% of the landslide area, accompanied by Omission and Commission Errors of around 10%. 

Furthermore, the findings of the accuracy assessment show that the quality of the results is higher 

regarding the landslide-affected area than compared to the number of landslides. In the case of 

selection category II, the Quality Percentage amounts to approx. 80% for the area and approx. 40% for 

the number of landslides. This difference reveals that the approach identifies larger landslides  

with higher reliability and that both identification errors (FN, FP) are mostly caused by objects of 

smaller spatial extents. 

Table 2. Accuracy statistics according to the three different identification categories (TP, 

FN, FP) in regards to number of landslides (N) and landslide-affected area (given in m2). 

Validation 
Site 

Identification 
Category 

I II III IV 

N Area N Area N Area N Area 

 TP 3 272,590 30 533,552 31 535,046 33 540,184
Uchkun FN 33 284,751 6 23,790 5 22,296 3 17,158

 FP 1 900 32 71,854 32 71,854 85 143,807

 TP 2 206,297 18 393,908 18 393,908 25 420,228
Papan FN 29 234,227 13 46,613 13 46,613 6 20,293

 FP 0 0 21 34,525 25 38,450 55 117,550
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Figure 12. Mapping results and accuracy for the four landslide likelihood selection categories  

(I–IV) of varying strictness (Time of landslide occurrence depicted by color—Legend: Figure 3). 

 

5.2. Evaluation of the Geometric Quality of the Landslide Object Delineation 

The correct spatial delineation of the automatically identified objects is important for the generation 

of high-quality multi-temporal landslide inventories which are required for subsequent objective 

hazard analysis. For this purpose, all of the 58 landslide objects which were correctly identified for the 

two validation sites have been individually compared to the reference mapping objects in regards to the 

degree of their spatial overlap (Figures 13 and 14). As a result, spatially explicit representations of the 

true positive (TP), false negative (FN) and false positive (FP) areas have been obtained for each object 



Remote Sens. 2014, 6 8047 

 

 

comparison (Figure 14). Their normalization by the size of the respective reference objects (sum of TP 

and FN) results in percentages for all of these three parameters. As such, the ideal spatial overlap 

between two objects is represented by 100% TP and 0% FP indicated by the star in the diagram of 

Figure 14 depicting the individual objects regarding their percentages of TP and FP. Based on this 

optimum situated at the origin of the diagram, three typical object delineation errors could be 

identified. Along the y-axis, the percentage of the correctly mapped landslide area is further reduced, 

thereby corresponding to a progressing underestimation of the size of the automatically derived objects 

compared to the size of the reference objects. Along the x-axis, the percentage of the FP area increases 

and results in an overestimation compared to the reference mapping. Along the line depicted in the 

diagram, the automatically mapped object corresponds in size to the reference object but differs either 

in shape or in position compared to the reference object. 

Figure 13. Schematic view of TP, FN and FP areas resulting from comparing the spatial 

overlap between automatically and manually (reference) derived landslide objects.  

 

Figure 14. Comparison of automatically identified landslide objects with manually derived 

reference objects (cf. Figure 13). (Left) Diagram of the TP and FP percentages of each 

object comparison. (Right) Results depicted for six examples (same legend as for Figure 13). 

 



Remote Sens. 2014, 6 8048 

 

 

Overall, the results depicted in Figure 14 show that most of the analyzed objects are located in the 

upper left part of the diagram close to the optimum point. The examples a and b in Figure 14 represent 

two cases of almost ideal object delineations. Another concentration can be seen along the depicted 

line of the diagram. It can be explained by the fact that automatically pixel-based object delineation 

always slightly differs from the manually digitized objects. This is especially evident in the case of 

small objects paradigmatically shown by the examples c and d of Figure 14. The examples e and f 

represent outliers of less exact object delineation for underestimation and overestimation, respectively. 

However, the diagram shows that for the vast majority of the analyzed landslide objects, the spatial 

overlap corresponds to at least 50% in regards to the original object contained in the reference mapping. 

6. Discussion 

The developed automated approach for spatiotemporal landslide mapping enables comprehensive 

assessment of landslide activity over longer periods of time. It is based on the analysis of  

landslide-specific vegetation changes using temporal NDVI-trajectories derived from optical remote 

sensing time series data complemented by relief parameters. To perform robustly over large areas, the 

approach considers the existing variability of vegetation change characteristics related to different 

types of landslides (Figure 5a) and to different parts within a single landslide (Figure 5b). This allows 

the identification of fresh and reactivated landslide occurrences including their separation from other 

surface changes not related to landslide processes (Figure 4). In this context, the approach 

differentiates the identified landslide objects by their overall landslide likelihood, enabling landslide 

experts to incorporate the level of uncertainty in the subsequent interpretation and evaluation of the 

results obtained by the automated analysis. 

To meet the goal of assessing the multi-temporal landslide activity, the approach derives objects of 

landslide activations which occurred at different times during the time span of analysis.  

For this purpose, the segmentation of landslide candidate objects builds on the result of a specific 

multi-threshold-based change detection analysis considering distinct and less pronounced  

landslide-related vegetation cover changes between each subsequent image pair contained in the 

remote sensing time series database. In contrast, the existing object-oriented landslide mapping 

approaches use mono-temporal information for the segmentation procedure [20,33–37] and thus are 

not designed to delineate active parts of a landslide. To evaluate the plausibility of the landslide 

candidate objects of the developed approach, they are further analyzed in regard to relief parameters 

and post-event rates of temporal revegetation. Analyzing landslides in regards to their relief position 

has long been a standard part of remote sensing-based landslide recognition [24,51]. However, the 

incorporation of revegation rates, derived by the analysis of the temporal NDVI-trajectories, has firstly 

been applied and allows separation of slower revegetation rates typical for areas affected by landslides 

from other areas characterized by faster revegetation, as in the case of agricultural fields. 

The application of the developed approach to the whole study area (Section 4) has confirmed its 

suitability for supporting the generation of multi-temporal landslide inventories for large areas. In this 

context, the approach enables the analysis of backdated landslide occurrence as well as the monitoring 

of ongoing landslide activity making it widely applicable in the frame of different applied tasks related 

to landslide investigations. However, the profound understanding of landslide processes also requires 
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the assessment of information not derivable by the developed approach, such as landslide type, depth 

of sliding surface and volume of displaced material. They are mostly assessed during field 

investigations that are time- and resource-consuming and therefore often carried out less frequently 

than needed. The developed approach can thus facilitate a more efficient and systematic way of 

conducting such field work by providing reliable spatiotemporal information on landslide occurrence 

allowing more focused field investigations. This is especially important for regions like the study area 

in southern Kyrgyzstan, where large areas are affected by frequent, albeit sporadic, occurrences of 

landslides (Section 2.1). 

Comprehensive accuracy assessment (Section 5) has been performed for two independent validation 

sites (Section 2.4) in order to assess the methodological performance of the approach including 

different parameterizations represented by the landslide likelihood-based selection categories. The 

highest accuracies have been obtained by applying the selection category II, which comprises the 

landslide objects of very high and high landslide likelihood (I and II). For both validation sites, this 

category has resulted in a 90% correctly identified landslide-affected area (Detection Percentage), 

whereas Omission and Commission Errors of approximately 10% and Quality Percentages of 80% 

could be achieved (Figure 12II). These accuracies show that most of the automatically detected 

landslides are characterized by a high landslide likelihood, which reveals that the developed automated 

approach is able to reliably distinguish landslide-related surface cover changes from other land cover 

changes. This means that the approach robustly accommodates the variability of landslide phenomena 

occurring within the large study area, as well as the remaining geometric mismatches and the 

radiometric variability contained in the multi-temporal RapidEye database. The fact that the results are 

comparable for both validation sites, differing in temporal landslide activity patterns (Section 2.4), 

further indicates a reliable landslide identification independent from the time of landslide occurrence. 

However, considering the number of identified landslides that have been obtained for the selection 

category II, the results are less accurate (Quality Percentage: ≈ 40%) than for the areal extent of the 

landslides (Figure 12II). This difference indicates that mainly smaller objects are the source for both 

identification errors—not identified landslides (FN) and incorrectly identified landslides (FP).  

To further improve the automatically derived identification accuracies of selection category II, the 

developed approach also allows for a semi-automatic procedure. For this purpose, the selection 

category IV has to be applied, thereby resulting in the consideration of all automatically identified 

landslide objects independent of their landslide likelihood. As a result, almost all of the reference 

landslides (30 out of 33 for the Uchkun and 25 out 31 for the Papan validation site) have been 

automatically identified (Table 2). However, at the same time, this category contains a higher number of 

FPs that could mostly be eliminated by subsequent expert-aided evaluation (Section 4). This way, even 

very small landslide occurrences, often characterized by less pronounced surface changes, have been 

contained by the landslide mapping result. The knowledge about such small activations can be very 

advantageous because they often represent precursors of subsequent large hazardous landslides. 

For comparing these accuracies to accuracies that have been obtained by other automated 

approaches for object-oriented landslide mapping, a number of recent studies has been selected which 

use the same accuracy metrics. Rau et al. [50] achieved Detection Percentages between 64.8% and 

92.7% and Quality Percentages between 58% and 81.7% for three test sites by post-event 

classification of images acquired by different sensors of very high spatial resolution. Martha et al. [29] 
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used a bi-temporal approach for eight image pairs and reported for each time period individual 

accuracies ranging from 71.5% to 96.7% for the Detection Percentage and approx. from 50% to 90% 

for the Quality Percentage. These accuracy statistics are based on the areal extent of the identified 

landslides and are of comparable or in part lesser accuracy than the results that were achieved in this 

study for the automated usage of selection category II (Detection Percentages of 88%–93% and 

Quality Percentages of 82.9%–84.8%). Martha et al. [29] have also assessed the accuracy for the 

number of identified landslides resulting in Quality Percentages between approx. 20% and 70%, which 

are also comparable to the results of this study in showing lower accuracies for the identified number 

of landslides (Quality Percentages of 34.6%–44.1%). 

Overall, the knowledge-based parameterization of the NDVI thresholds and the relief properties 

enabled a high mapping quality for both validation sites despite their differences in natural and land 

use conditions, RapidEye data coverage, and spatiotemporal landslide activity. This opens up the 

principle opportunity for applying the approach to other landslide-affected areas characterized by the 

presence of landslide-related changes in vegetation cover. In this context, the wider applicability of the 

developed approach also depends on the availability of suitable satellite remote sensing data.  

The RapidEye time series data used in this study represent an ideal database characterized by high 

spatial and temporal resolution. However, the approach also comprises the potential for the extension 

to data acquired by other satellite-based remote sensing systems, as it is primarily based on the NDVI 

representing a robust spectral index which can be calculated from most available multispectral satellite 

remote sensing data. 

7. Conclusions 

The developed automated approach is capable of object-oriented automated mapping of 

spatiotemporal landslide activity using optical satellite time series data and a digital elevation model. 

The approach builds on temporal NDVI-trajectories that represent pixel-based temporal footprints 

incorporating a variable number of multi-temporal data acquisitions. They enable the continual analysis 

of landslide-related surface cover changes over longer periods of time allowing their separation from 

other land cover changes based on differences in temporal evolution of the vegetation cover. To enable 

a meaningful evaluation of the automatically mapped landslide objects, they are characterized by 

uncertainty-related landslide likelihood classes. Based on these classes, the approach can be performed in 

a fully automated way if only objects of higher landslide likelihood are included or, in a semi-automated 

manner, if all identified landslide objects are considered independent from their landslide likelihood. 

This way, the knowledge-based approach accommodates different user needs and allows for efficient 

object-oriented automated landslide mapping. 

The accuracy assessment of the presented approach has proven its suitability for multi-temporal 

mapping of landslides of different sizes, shapes, types, and activity styles under varying natural and 

land use conditions with a high mapping accuracy of a Quality Percentage of 80%. Thus, the approach 

enables detailed spatiotemporal assessment of landslide activity over large areas during longer periods 

of time. Its application to the 7500 km2 study area in southern Kyrgyzstan has revealed a perpetual 

process activity in this area between 2009 and 2013 which could not be assessed by the local 

authorities solely relying on field-based landslide reporting and mapping. Consequently, the approach 
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has enabled the monitoring of the recent spatiotemporal landslide activity, thereby contributing to the 

objective and reproducible generation of multi-temporal landslide inventories, which have been thus far 

largely missing for the analyzed region in southern Kyrgyzstan and many other parts of the world [3,6]. 

The results of the spatiotemporal landslide mapping can also be further analyzed in relation to 

landslide triggering and predisposing factors in order to improve the regional process understanding as 

an important prerequisite for a spatially and temporally differentiated hazard assessment. 

Since the approach is solely based on the NDVI, in principle it can be extended to a wide range of 

multispectral satellite remote sensing data comprising the required spectral bands. Taking into account 

the average size of approximately 13,000 m2 of the landslides that are identified in the study area in 

southern Kyrgyzstan, sensors with up to 30 m spatial resolution are considered to be suitable for 

automated landslide mapping in this region. Thus, the RapidEye time series database has been 

extended further into the past based on archived data of various multispectral systems, such as Landsat, 

Spot and Aster [45]. In this context new opportunities will open up with the upcoming launch of the 

Sentintel-2 system [52]. Its envisaged revisiting time of up to five days, the spatial resolution of 10 m, 

and the large swath width of 290 km will make the data of Sentinel-2 especially suitable for spatiotemporal 

monitoring of landslide activity in global hotspots, such as South America (e.g., Brazil, Colombia) and 

South-East Asia (e.g., Taiwan, Thailand, Philippines) [2]. However, the global transferability of the 

developed approach will require further methodological development in order to adapt it for regions 

where the natural environments largely differ from the conditions in Central Asia.  
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